Memory Efficient Algorithms and Implementations for Solving

Small-board-sized Go

Hung-Cheng Lin

National Taiwan University

Advisor: Chih-Wen Hsueh, Ph.D.
Coadvisor: Tsan-sheng Hsu, Ph.D.

Hung-Cheng Lin (NTU) July 18, 2018 1/35

@ Determine all possible states for a small rectangular Go board

@ Determine the fair Komi and opening

@ Huge number of state information is needed to keep

@ Memory-efficient method with acceptable performance is required

Hung-Cheng Lin (NTU) July 18, 2018 2/35

Previous Work: Small-board-sized Go

@ Alpha-Beta search with optimization to weakly solve small rectangular board with
intersections less than 30

@ Using Meta-MonteCarlo-Tree-Search to build a huge opening book for 7 x 7 Go, and
can defeat professional Go players?
@ Variation of small-board-sized Go
@ Solve 5 x 5 Atari-Go: the winner is the player that first captures the stone(s), and playing
pass is prohibited?
@ Determine 7 x 7 kill-all Go opening positions: Black plays two stones first, and White
wins if there’s a white live string, Black wins if there’s no legal move for both players*

@ Legal states for square Go boards are calculated for size up to 17 x 17 and give the
boundary of the legal state count for 19 x 19 Go®

van der Werf, et al., 2009
2Chou, et al., 2011
Svan der Werf, et al., 2002
“Chang, Wei and Wu, 2016
5Tromp and Farneback, 2006
Hung-Cheng Lin (NTU) July 18, 2018 3/35

Related Work: Retrograde Analysis

@ Retrograde analysis is widely used for searching endgames in chess-like game
programming, such as Chinese chess and shogi

@ Or solve the full games when the state-space complexity of the game is small, like
awari

@ Previous study 8 categorizes four types of retrograde analysis algorithms by their
implementations

@ This study use the fourth method, which is the refined version that reduce propagate
count

®Ping-hsun Wu, Ping-Yi Liu, and Tsan-sheng Hsu. An external-memory retrograde analysis algorithm.
2004.
Hung-Cheng Lin (NTU) July 18, 2018 4/35

@ R x C Go: R horizontal lines and C vertical lines on the board
@ R x C intersections

@ String: connected set of stones in the same color
@ Liberty of a String: the number of connected empty intersections

"https:
//upload.wikimedia.org/wikipedia/commons/3/39/Weiqgi_qgi.png?21530850936595
Hung-Cheng Lin (NTU) July 18, 2018 5/35

https://upload.wikimedia.org/wikipedia/commons/3/39/Weiqi_qi.png?1530850936595
https://upload.wikimedia.org/wikipedia/commons/3/39/Weiqi_qi.png?1530850936595

@ There are many different Go rules, mainly different between rules of Ko and scoring
@ General Go Rule:
@ The black player plays first
@ Black and white players place stones with the corresponding color in order
@ |If the opponent’s string is out of liberty, it is captured and moved off the board
© A player cannot play a Ko move
@ A player cannot play a suicidal move, which is the move that makes his or her string’s
liberty become 0, unless this move involves the capture of an opponent’s string
@ A player can pass a move. If two players pass continuously, the game is ended and the
score is calculated

Hung-Cheng Lin (NTU) July 18, 2018 6/35

@ Definition

@ board position: positions of stones on the board
e board configuration: board position and player’s turn

@ Ko is the rule that prevents a loop in the game
@ Some commonly used Ko rules are:
@ Basic Ko
@ Prevent the move that recreates the position from two moves before, but allows a longer
cycle
@ Positional Superko
@ Prevent the repeat of a board position
@ Situational Superko
@ Prevent the repeat of a board configuration

Hung-Cheng Lin (NTU) July 18, 2018 7/35

Scoring Rules

The two main scoring methods involve area scoring and territory scoring:

@ Area Scoring
e The player’s score is the number of empty intersections only his color surround and the
number of its stones on the board
o Used in Chinese rule
o Easier to implement in computer Go

@ Territory Scoring
o Dead stones and stones that are captured are looked as another color’s player’s
prisoners
e The player’s score is calculated in terms of his or her territory and the number of
prisoners
o Territory is the empty intersections that are controlled by one color
e Used in Japanese rule and Korean rule

Hung-Cheng Lin (NTU) July 18, 2018 8/35

Scoring Rules

@ In general, area scoring and territory scoring give the same result or one or two
points difference
o If there’s no stone captured in the game
o Territory scoring : draw (Black 3 points, White 3 points)
e Area scoring : Black win one point (Black 13 points, White 12 points)

A B C D E

= ON W A~ o
= N W Ao
=N W Ao

A B C D E

Hung-Cheng Lin (NTU) July 18, 2018 9/35

Problem Definition

The Rules that are used for this study:
@ Basic Ko
e When the game falls into a loop, the result of the game is considered to be draw

@ Area scoring
© No komi

Hung-Cheng Lin (NTU) July 18, 2018 10/35

@ Strongly solved small-board-sized Go
@ For every posible state, get

e the game result (which player wins the game)
e the score (the difference in points between the winner and the loser)

Hung-Cheng Lin (NTU) July 18, 2018 11/35

State Encoding

Feature Maximum | Bit Used | Description
Different
Values
Board Position 3fxC 40
KoandPass | Rx C+3 5 | Pass is 0 with all inter-
sections, pass is 1 with
Ko is 0, pass is 2 with
Kois 0
Turn 2 0 | Compressed
Degree | Rx C+1 5 | All possible move in the
board and pass
Game Result 4 2 | (black)win, draw, lose,
and undetermined
Score | 2Rx C+2 6| -RxCtoRxC,and
undetermined

Hung-Cheng Lin (NTU) July 18, 2018 12/35

State Compression

@ Only consider legal states
@ Terminal state: state that the result can be directly determined
o Not save in the memory because the result can be calculated when it is needed

@ States with symmetrical board configuration

e Have the same result and score
e Can be compressed into one state

Hung-Cheng Lin (NTU) July 18, 2018 13/35

State Compression

A B C D E A B C D E
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
A B C D E A B C D E
White’s turn Black’s turn

Hung-Cheng Lin (NTU) July 18, 2018 14/35

State Compressionin4 x 5

Property Value

Possible States | 320 x 21 x 3 = 219,667,417, 263

Legal States 1,840,058, 693

Legal States Ratio in Possible States 0.837%
Compressed States 460,114,319

Compressed States Ratio in Legal States 25.01%

Hung-Cheng Lin (NTU) July 18, 2018 15/35

Search Algorithm

@ Preprocessing

@ Search Game Result
© Search Score

© Save Search Result
© Validation

Hung-Cheng Lin (NTU) July 18, 2018 16/35

Search Game Result

Retrograde Analysis Algorithm
@ All states are undetermined except terminal states
@ If a state is not undetermined, propagate to its previous states
@ remaining states are draw

(Black) lose (counter 3 — 0)

(Black) win ,@&’«’ Ly,
v\ dat Go\’ﬁ\ counter-1 Ly, 7
update

Undetermined | | (White) lose| |(White) win (White) win (White) win

Hung-Cheng Lin (NTU) July 18, 2018 17/35

Search Game Result

@ For every state S, all of its next states S’ are propagated to S at most once
@ There is a positive correlation between edge counts and search time

Hung-Cheng Lin (NTU) July 18, 2018 18/35

@ Retrograde analysis is repeated to search for the states in decreasing order of the
absolute value of the score
o lLetRxC=N
o Retrograde Analysis(win N and lose N) — Retrograde Analysis(win N — 1 and lose
N — 1) [
o In this order, for every state S, all of its next states S’ are propagated to S at most once

L1(real L2) L3—12
w1/~ L2/ L3
Wil(real W2) W3 W2 W3
L1 w2,/ X
L2 L1 L2 L1

Hung-Cheng Lin (NTU) July 18, 2018 19/35

Save Result into File

@ For each state, save all possible next states’ result

o A state has at most R x C + 1 next states, including pass
e Each score is saved using 5 bits
@ The size of the result file is 5 x N x (R x C + 1) bits

@ When there is a query

@ The state is transformed to the compressed state
@ Get index of the state for the legal state array
© Access result from the result file using the index

Hung-Cheng Lin (NTU) July 18, 2018 20/35

In-memory Method

@ Divide the legal state array into blocks, we called it memory blocks
@ Use zlib library to compress memory blocks
@ Memory block is compressed if they are not in use

Uncompressed
State Array

T~ \uncompressed block

Memory Block ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘

compressed block

Compressed State Data(Fixed Size)

MemoryChunk‘O‘l‘2‘3‘4‘5‘6‘7‘8‘

Hung-Cheng Lin (NTU) July 18, 2018 21/35

Memory Issue

@ A state is represented by its index in the legal state array

@ Flags are saved in the memory as Boolean arrays to allow quick access
o States are already searched or not
o States that are currently visited

@ The size of uncompressed state number is flexiable to adjust, in order to reduce
memory block compression and decompression counts

Hung-Cheng Lin (NTU) July 18, 2018 22/35

Performance Issue

Time-consuming operations

@ If the state is in the compressed memory block, it must be decompressed before it
can be used

@ Obtain the index of a state in the state array
@ Find previous states in memory blocks

Hung-Cheng Lin (NTU) July 18, 2018 23/35

Performance Consideration - Memory Block Size

@ If the memory block is small
o Less states would be compressed and decompressed during an iteration

@ If the memory block is large
o Greater compression ratio

@ Optimize the search process
@ Determine maximum number of uncompressed states
@ Can not exceed the memory limit
@ Determine memory block size
@ To minimize the running time

Hung-Cheng Lin (NTU) July 18, 2018 24/35

@ Serial Order
@ Sort order: board position > Ko position > pass count

@ Piece Order
e Sort order: total number of stones on the board > number of black stones on the board

> board position > Ko position > pass count

Hung-Cheng Lin (NTU)

(b) (d) () ©
boardl) board0 boardl board1 boardz oard(board[) board2 boardl board()
ko0 ko0 ko0 ko0 ko0 00 ko0 ko0 ko0 ko0
[pass0 passl pass0 passl pass0 bass0 passl pass0 passl pass0
0] (® (i) 0] 0) () @) (i) 0] [0)
[board2 board3 board3 board4 board4 hoard6 board486 board486 board1 board1
ko0 ko0 ko0 ko0 ko0 00 ko0 ko0 ko0 ko0
lpass1 passO passl passO passl [pass1 pass0 passl pass0 passl

July 18,2018 25/35

Performance Consideration - Sort Order

@ Piece ordering achieves better data locality
@ But much more time is required for sorting
e The additional time to calculate the number of stones, compared to serial order

Hung-Cheng Lin (NTU) July 18, 2018 26/35

Performance Consideration - Data Saving Method

Used Time(second)

Hung-Cheng Lin (NTU)

7000

6000

5000

4000

3000

2000

1000

T
10 .

zlib -

3249 3403

2858 3735

1428.51376.4

693 6829

4 8

block size(GB)

484.1 |

16 32

July 18, 2018

27/35

@ The biggest board searched is 2 x 11
@ Total 6,941,794,698 states, use about 80 GB memory

Size | Depth Compressed | Time Best | Best

State Number Result | First

Move

1x1 - - - draw | pass

1x2 - - - draw | pass

1x3 - - - B+ 03 B1

1x4 - - - B+ 04 B1
1xn

n<20and - - - draw -
n>5

Hung-Cheng Lin (NTU) July 18, 2018 28/35

Size | Depth Compressed Time Best | Best
State Number Result First

Move

2x2 2 26 | 0.164 second draw Al
2x3 11 293 | 0.167 second draw B1
2x4 18 2,169 | 0.234 second B+ 08 B1
2x5 30 18,205 | 0.791 second B+10 C1
2x6 32 152,887 | 3.944 second B+12 C1
2x7 35 1,304,472 1.1 minute B+14 D1
2 x8 41 11,122,653 10.61 minute B+ 16 D1
2x9 49 141,646,333 | 107.43 minute B-+18 E1
2x10 54 1,206,719,025 18.0 hour B+ 04 E1
2 x 11 63 6,941,794,698 32.6 day B+ 06 F1

Hung-Cheng Lin (NTU)

July 18, 2018

29/35

Size | Depth Compressed Time Best | Best
State Number Result | First

Move

3x3 26 3,696 | 0.462 second B+ 09 B2
3x4 46 166,358 | 4.121 second B+ 04 B2
3x5 46 4,200,206 3.8 minute B+ 15 B2
3x6 54 106,590,386 | 152.2 minute B+18 B3
3x7 59 2,715,285,034 | 2781.0 minute B+ 21 B3
4 x4 56 9,276,006 5.9 minute B + 01 B2
4 x5 70 1,402,761,648 | 951.4 minute B+20 Cc2

Hung-Cheng Lin (NTU)

July 18, 2018

30/35

Strategy for 1 x n Go

-

a A WON

© o N o

Input : A state Sthatisin Sy
Output: A legal move that can play at S which generates optimal result
Determine the position by the fact that board|[2] = white, or board[2] # black and
board[3] # black
firstblack «— minimum position that board(firstblack] = black
if firstblack not exist then
| firstblack < n+ 1

if firstblack > 3 and board|firstblack — 1] = white and board|firstblack — 2] = empty then
// Step 1
return firstblack-2
else
firstempty < first empty intersection from position 2 to position n which is legal
if firstempty exist then
// Step 2: if there’s no suitable move in step 1
L return firstempty

// Step 3: 1if there’s no suitable move in step 1 and 2
return pass move

Hung-Cheng Lin (NTU) July 18, 2018 31/35

Time and Search Depth

@ Black can fully win and other boards have different distribution in time and search
depth

used time(ratio)

Hung-Cheng Lin (NTU) July 18, 2018 32/35

Conclusion

@ Retrograde analysis requires a vast amount of memory

@ Previous approach solves this problem by either using parallelism, storing on disk or
advanced indexing method
o We use in-memory method with state compression methods

@ Refine the algorithm, change the sort order and memory block size to make
performance acceptable

Hung-Cheng Lin (NTU) July 18, 2018 33/35

Future Work

@ Small-board-sized Go may have rules to find
o Optimal move generating method of 2 x N, 3 x N - --

@ Better sorting criteria that can improve performance to access data

Hung-Cheng Lin (NTU) July 18, 2018 34/35

The End

Hung-Cheng Lin (N July 18, 2018 35/35

